SPH-FEM Coupled Fluid-structure Interaction Simulation of Vertical Water Brake in Rocket Sled via LS-DYNA

ZHANG Ning, DONG Longlei, LYU Shuiyan, LIU Yang, FU Liang

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (11) : 1-9.

PDF(5082 KB)
PDF(5082 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (11) : 1-9. DOI: 10.7643/ issn.1672-9242.2025.11.001
Weapons Equipment

SPH-FEM Coupled Fluid-structure Interaction Simulation of Vertical Water Brake in Rocket Sled via LS-DYNA

  • ZHANG Ning1,2, DONG Longlei1, LYU Shuiyan2, LIU Yang2, FU Liang2
Author information +
History +

Abstract

The work aims to accurately simulate the mechanical response characteristics of a vertical water brake under supersonic conditions during the complete deceleration process across different water layers. HyperMesh was used to generate high-quality finite element meshes and FEM in LS-DYNA was employed to model the vertical water brake structure, while the meshless SPH method was adopted to simulate the splashing dynamics of the cylindrical water column during braking. Through this coupled SPH-FEM numerical approach, the FSI between the vertical water brake and the water layer was analyzed, including the maximum stress points of the water brake during motion, time-domain responses of stress variations throughout the process and theoretical-simulation error characteristics of braking force under different working conditions. Experimental data from rocket sled tests were further used to validate the simulated braking force errors across scenarios. Data analysis revealed that the average error and maximum error of the simulation results were 6% and 10% respectively, leading to a conclusion with clear engineering guiding value. By combining theoretical derivation, simulation, and experimental testing, the effectiveness of the SPH-FEM fluid-structure interaction numerical simulation method based on LS-DYNA in predicting the mechanical response during the complete braking process of the vertical water brake for rocket sleds is verified.

Key words

rocket sled / water brake / LS-DYNA / SPH-FEM method / fluid-structure interaction / dynamic response

Cite this article

Download Citations
ZHANG Ning, DONG Longlei, LYU Shuiyan, LIU Yang, FU Liang. SPH-FEM Coupled Fluid-structure Interaction Simulation of Vertical Water Brake in Rocket Sled via LS-DYNA[J]. Equipment Environmental Engineering. 2025, 22(11): 1-9 https://doi.org/10.7643/ issn.1672-9242.2025.11.001

References

[1] 余元元. 双轨火箭滑车高速水刹装置研究[D]. 南京: 南京航空航天大学, 2008.
YU Y Y.Research on High-Speed Water Brake Device of Double-Track Rocket Pulley[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008.
[2] 夏有财, 孔维红, 孙其会, 等. 两级推进单轨火箭橇试验研究[J]. 航空动力学报, 2025, 40(3): 489-495.
XIA Y C, KONG W H, SUN Q H, et al.Experimental Study on Two-Stage Propulsion Monorail Rocket Sled[J]. Journal of Aerospace Power, 2025, 40(3): 489-495.
[3] WORTHINGTON A M, COLE R S.Impact with a Liquid Surface Studied by the Aid of Instantaneous Photography. Paper II[J]. Philosophical Transactions of the Royal Society B, 1900, 194: 175-99.
[4] Von KARMAN T.The Impact of Seaplane Floats during Land-ing[J]. Technical Report Archive & Image Library, 1929(321): 309-313.
[5] CHEN T, HUANG W, ZHANG W, et al.Experimental Investigation on Trajectory Stability of High-Speed Water Entry Projectiles[J]. Ocean Engineering, 2019, 175: 16-24.
[6] 顾建农, 张志宏, 范武杰. 旋转弹丸入水侵彻规律[J]. 爆炸与冲击, 2005, 25(4): 341-349.
GU J N, ZHANG Z H, FAN W J.Experimental Study on the Penetration Law for a Rotating Pellet Entering Water[J]. Explosion and Shock Waves, 2005, 25(4): 341-349.
[7] CHEN A R, LI X D, ZHOU L W, et al.Experimental Study on the Cavity Evolution and Liquid Spurt of Hydrodynamic Ram[J]. Defence Technology, 2022, 18(11): 2008-2022.
[8] REN K R, PENG Y, MIAO J T, et al.Dynamic Responses of Liquid-Filled Vessels Impacted by a High-Velocity Projectile[J]. International Journal of Mechanical Sciences, 2025, 285: 109811.
[9] JI Y, LI X D, ZHOU L W, et al.Comparison of the Hydrodynamic Ram Caused by One and Two Projectiles Impacting Water-Filled Containers[J]. International Journal of Impact Engineering, 2020, 137: 103467.
[10] LIU X Y, CAI X W, HUANG Z G, et al.Comparative Study on the Oblique Water-Entry of High-Speed Projectile Based on Rigid-Body and Elastic-Plastic Body Model[J]. Defence Technology, 2025, 46: 133-155.
[11] SEDDON C M, MOATAMEDI M.Review of Water Entry with Applications to Aerospace Structures[J]. International Journal of Impact Engineering, 2006, 32(7): 1045-1067.
[12] 王瑞琦, 黄振贵, 朱世权, 等. 平头弹丸入水空泡闭合实验研究及数值模拟[J]. 兵器装备工程学报, 2017, 38(12): 36-39.
WANG R Q, HUANG Z G, ZHU S Q, et al.Experimental and Numerical Study of Cavity Closure of Flat Projectile Entering Water[J]. Journal of Ordnance Equipment Engineering, 2017, 38(12): 36-39.
[13] 黄振贵, 范浩伟, 陈志华, 等. 空心弹高速入水机理及特性数值模拟研究[J]. 爆炸与冲击, 2024, 44(1): 117-131.
HUANG Z G, FAN H W, CHEN Z H, et al.Numerical Simulation Study on the Mechanism and Characteristics of Highspeed Water Entry of Hollow Projectiles[J]. Explosion and Shock Waves, 2024, 44(1): 117-131.
[14] 周杰, 徐胜利. 弹丸入水特性的SPH计算模拟[J]. 爆炸与冲击, 2016, 36(3): 326-332.
ZHOU J, XU S L.SPH Simulation on the Behaviors of Projectile Water Entry[J]. Explosion and Shock Waves, 2016, 36(3): 326-332.
[15] 高英杰, 刚旭皓. 基于SPH-FEM耦合方法的回转体高速入水数值研究[J]. 舰船科学技术, 2022, 44(17): 6-11.
GAO Y J, GANG X H.Numerical Analysis of High Speed Water-Entry of the Revolution Body Based on SPH-FEM Coupling Method[J]. Ship Science and Technology, 2022, 44(17): 6-11.
[16] 陈震, 肖熙. 二维楔形体入水砰击仿真研究[J]. 上海交通大学学报, 2007, 41(9): 1425-1428.
CHEN Z, XIAO X.The Simulation Study on Water Entry of 2D Wedge Bodies[J]. Journal of Shanghai Jiao Tong University, 2007, 41(9): 1425-1428.
[17] GONG K, LIU H, WANG B L.Water Entry of a Wedge Based on SPH Model with an Improved Boundary Treatment[J]. Journal of Hydrodynamics, Ser B, 2009, 21(6): 750-757.
[18] WANG L, XU F, YANG Y.Research on Water Entry Problems of Gas-Structure-Liquid Coupling Based on SPH Method[J]. Ocean Engineering, 2022, 257: 111623.
[19] 张义群. 基于SPH的流体模拟中流固边界及液体表面处理算法的研究[D]. 合肥: 合肥工业大学, 2020.
ZHANG Y Q.Research on Fluid-Solid Boundary and Liquid Surface Treatment Algorithm In Fluid Simulation Based on SPH[D]. Hefei: Hefei University of Technology, 2020.
[20] 张小锋. 基于SPH的楔形板砰击入水特性研究[D]. 武汉: 华中科技大学, 2019.
ZHANG X F.Study on Characteristics of Wedge-Shaped Plate Slamming into Water Based on SPH[D]. Wuhan: Huazhong University of Science and Technology, 2019.
[21] 丁宁, 王鑫博. 基于SPH法的返回舱入水载荷模拟分析[J]. 计算力学学报, 2023, 40(6): 963-971.
DING N, WANG X B.Simulation Analysis on Water Entry Loads of a Space Capsule Based on SPH Method[J]. Chinese Journal of Computational Mechanics, 2023, 40(6): 963-971.
[22] LYU H G, SUN P N, HUANG X T, et al.On Removing the Numerical Instability Induced by Negative Pressures in SPH Simulations of Typical Fluid-Structure Interaction Problems in Ocean Engineering[J]. Applied Ocean Research, 2021, 117: 102938.
[23] 王健, 赵庆彬, 陶钢, 等. 火箭橇水刹车高速入水冲击数值模拟[J]. 爆炸与冲击, 2010, 30(6): 628-632.
WANG J, ZHAO Q B, TAO G, et al.Numerical Simulation on Rocket Sled Water-Brake High-Speed Water-Entry Impact[J]. Explosion and Shock Waves, 2010, 30(6): 628-632.
[24] 王健, 张旭光, 孔维红. 火箭橇水刹车高速冲击入水安全性分析[J]. 南京理工大学学报, 2013, 37(6): 902-906.
WANG J, ZHANG X G, KONG W H.Safety Analysis on Rocket Sled Water Brake High-Speed Water-Entry Impact[J]. Journal of Nanjing University of Science and Technology, 2013, 37(6): 902-906.
[25] 刘军, 殷之平, 丁国元, 等. 火箭橇水刹车戽斗入水运动的阻力预测[J]. 航空工程进展, 2015, 6(3): 312-318.
LIU J, YIN Z P, DING G Y, et al.Resistance Forecast of Water Bags in Braking Trays of a Rocket Sled on the Process Movement[J]. Advances in Aeronautical Science and Engineering, 2015, 6(3): 312-318.
[26] 徐赵. 火箭滑橇水刹车条件下的结构力学数值分析[D]. 南京: 南京理工大学, 2013.
XU Z.Numerical Analysis of Structural Mechanics under the Condition of Water Braking of Rocket Sled[D]. Nanjing: Nanjing University of Science and Technology, 2013.
[27] 李新颖, 肖军, 张家旭, 等. 基于CFD的火箭滑橇水刹车水动性能分析[J]. 系统仿真技术, 2021, 17(1): 37-42.
LI X Y, XIAO J, ZHANG J X, et al.Analysis on Hydrodynamic Performance of Rocket Sled Water Brake Based on CFD[J]. System Simulation Technology, 2021, 17(1): 37-42.
[28] 李晓杰, 张程娇, 王小红, 等. 水的状态方程对水下爆炸影响的研究[J]. 工程力学, 2014, 31(8): 46-52.
LI X J, ZHANG C J, WANG X H, et al.Numerical Study on the Effect of Equations of State of Water on Underwater Explosions[J]. Engineering Mechanics, 2014, 31(8): 46-52.
PDF(5082 KB)

Accesses

Citation

Detail

Sections
Recommended

/